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LETTER TO THE EDITOR 

A new series for approximating Voigt functions* 

John A Gubnert 
Department of Electrical and Computer Engineering. University of Wisconsin. Madison, 
WI 53706. USA 

Received 21 July 1994 

Abstract. A big!  function is the convoiution of a Gaussian and a Cauchy, or Loren&, 
density. The computation of these functions is required in problems arising in a variety of 
subjects such as nuclear reactols, atmospheric transmittance, and spectroscopy. This letter 
presenfs a new series for the approximate computation of Voig! functions. The derivation is 
accomplished using stnightfaward Fourier techniques. and it yields computable ermr bounds 
between the approximation and the Voigt function. The approach also permits a simple derivation 
of an asymptotic expansion for large argument values. 

The convolution of a Gaussian probability density and a Cauchy, or Lorentzian, probability 
density is known as a Voigt function. Because Voigt functions arise in many different 
contexts, such as nuclear reactor theory, atmospheric transmittance, and spectroscopy, there 
has been much interest in computing them, e.g. [1,4-11]. 

In the present letter we derive a simple new series approximation for Voigt functions 
along with computable error bounds in section 2. We also give a simple derivation of an 
asymptotic expansion with error bounds in section 3 and a numerical example is discussed 
in section 4. 

The standard Gaussian and Lorentzian probability densities are G(0)  := e-B'/z/l/Z;; 
and L(0)  := l/[n(l +e2)], respectively. The Voigt function can be written as 

m 
G(Z -me)L(e)de. 

Since h(z, 0) = G(z), our interest is in the case a > 0. 

A new series for h 

We derive the approximation of h(z,  a), 

where 

* This work was supported by the Air Force Office of Scientific Research under grant no F49620-92-1-0305 
t E-mail address: gubner@engr.wisc.edu 

0305470/94/190745tO5$l9SO @ 1994 IOP Publishing Ltd L745 



L746 Letter to the Editor 

Given any ahn > 0, we show that the approximation emr ,  Ih(z,a) - L W , ~ ( Z , ( Y ) ~ ,  is 
uniformly bounded for all z and all LY 2 amin. We also give computable bounds on the error 
as a function of W and N .  

To establish our claims, we proceed as follows. We begin by taking Fourier transforms 
of (I), regarded as functions of z .  This results in 

m 
fi(o,a) := h ( z ,  m)e'"dz = c ^ ( o ) ~ ( a w )  1, - 

where G(w) = e-dp and  YO) = e-n'rl. It then follows that 

In particular, h(0, (U) = a-'e'212~,me-o*/zdo, which can be evaluated in terms of the 
complementary error function. For W > 0 put 

which is a decreasing function of amin. Also, the bound is exact for z = 0 and (Y =amin. 
S9ce the integfal in (5) is2vera finite interval, and since G is continuously differentiable 

with G ( W / 2 )  = C(- W / 2 ) ,  G has a uniformly convergent Fourier series [3, p 321-21. We 
can therefore replace c^(w) in (5) by its Fourier series, CZ-, where zo := 2n/ W ,  
and 

Since 

is equal to In (z ,  a, W )  in (3). we find that 

Now put 

We show in the appendix that 
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and 

G"(o) cos(nzoo) d o  . (11) r2 - - 
K N ( W )  := sup 

ll>N 

Note that by the Riemann-Lebesgue lemma [2, p 801, xN(W) -+ 0 as N -+ W. 

We have now proved that for any z and any a z 0, limw,,[lims,m ~ w , N ( z ,  U)] = 
h(z ,  a). In practice, W and N are finite, and we now show that hW,N can be approximated 
by &WJ as follows. If W is large, then (7) tells us that in M (2?r/ W)G(nzo). Making 
this substitution in (9) yields the right-hand side of (2). To bound the error in making this 
substitution, observe that 

By combining (6), (10) and (13), we have a uniform bound on the absolute error, 
Ih(z, a) - &w,N(z, u)l, for all z and all 01 2 amin. 

Remark. From (61, (IO), and (13). we see that our approximation guarantees more accuracy 
as amin increases. 

Asymptotic expansion of h 

We have shown that for fixed W and N, ~ w , N ( z , ~ )  can uniformly approximate h(z,a). 
However, from (4) and the Riemann-Lebesgue lemma, we see that for fixed a, as IzI --f CO, 

h(z, a)  --t 0. This decay is also exhibited by the approximation in (2) and (3). Hence, 
for large IzI, the bounds on the approximation error may be greater than the magnitude of 
the number we are trying to compute. Therefore, in this section we present an asymptotic 
expansion x,&, a) that becomes more accurate as 121 -+ CO. 

We begin by rewriting (4) as h(z, a) = n-' j," F&) cos(oz) do,  where 

Using repeated integration by parts yields 

Of course, we put 

and we note that 
@(O) = -a 

~ ~ 3 y o )  = -a3 + 3a 

~;5)(0) = -a5 + 1oru3 - isa 
FA7)(0) = -a7 + 21a5 - 105a3 + 105a 

Ff)(O) = -a9 + 3601' - 378a5 f 1 2 6 0 ~ ~  - 9452 
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The general formula for Fim) is obtained by noting that ( - l )m8m)(u) /&o)  is the mth 
Hermite polynomial. 

To analyse the error incurred when using the expansion, first note that by the 
Riemann-Lebesgue lemma, the integral in (14) goes to zero as IzJ + CO. Hence, 
zz2”lh(z, a) -xn( z ,  a)l goes to zero as IzI + CO, and we have an asymptotic expansion of 
the Poincar6-type 12, p 151. To analyse the asymptotic relative error, note that as IzI -+ CO. 
(14) implies nz*h(z,a) + --FL(O) =CY, while rrz*lh(z,a) -&(z,a)l converges to zero. 
Thus, the relative error, Ih(z.01) - ~ n ( z , ~ ) l / l h ( z , a ) l  converges to zero. 

Numerical bounds on the above errors can be obtained by noting that the magnitude 
of the integral in (14) is less than 1,“ IFA2”)(w)l do, which can be computed easily with a 
numerical integration routine for small a and n. 

Remark. After appropriate scaling, it can be seen that x,, is equivalent to 19, equation (14)]. 
The derivation in 191 is quite different from ours, and no error analysis is given. 

Numerical example 

The application that motivated this work required the computation of h(z,  a) for all z and 
all CY E [0.1,4]. To obtain an approximation with a relative error of less than 1 x 
we proceeded as follows. Since h can be computed quite accurately, though slowly, with 
a numerical integration routine, we first observed that the asymptotic expansion yields 
a relative error of less than 1 x for IzI > 11 when a E [0.1,4]. To approximate h 
for JzJ < 1 I ,  we proceeded as follows. From the graphs of h shown in figure 1 for several 
values of a, we saw that the minimum value of h occurs at z = i l l  and a = 0.1, for which 
h(il1,O.l)  = 2.7 x lo-‘. So, to obtain a relative error of less than 1 x lob6, it suffices 
to bound the absolute error between h and i c , ~  by 2.7 x lo-’’. By taking W = 14, we 
found that the bounds in (6) and (12) were 5.00 x and 4.58 x lo-”. respectively. By 
computing the integral in (1  1) for n > 1 numerically, we found that the largest magnitude 
for n > N = 15 was achieved at n = 16 yielding rls(14) = 4.88 x lo-’’. Thus, the bound 
in (IO) is 1.95 x and the total uniform error bound is 2.4 x IO-’’ as required. 

Figure 1. Gnphs of h(r, a ) ,  The legend indicates 
the different values of a. 

Appendix 

We now establish (10). 

is that since L(z,a, W) is equal to (8). Un(z,a,  W)l < I / c Y ~ . .  

We begin with two simple observations. The first is that 
l/nZ f 1/N, which follows by an integral comparison. The second observation m 



Letter to the Editor L749 

The remainder of the proof consists of showing that in is O(n-*). More precisely, we 
use a standard application of integration by parts to show that linl is less than a constant 
divided by_n2, and we identify the constant. 

Since G is even, rewrite (7) 

and then integrate by parts twice and use the fact that ZOW = 2ir and the fact that a(0) = 0. 
We obtain 

where K.(W) denotes the integral in (11). This establishes (10). 
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